Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20102, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635701

RESUMO

Determining optimum irrigation termination periods for cotton (Gossypium hirsutum L.) is crucial for efficient utilization and conservation of finite groundwater resources of the Ogallala Aquifer in the Texas High Plains (THP) region. The goal of this study was to suggest optimum irrigation termination periods for different Evapotranspiration (ET) replacement-based irrigation strategies to optimize cotton yield and irrigation water use efficiency (IWUE) using the CROPGRO-Cotton model. We re-evaluated a previously evaluated CROPGRO-Cotton model using updated yield and in-season physiological data from 2017 to 2019 growing seasons from an IWUE experiment at Halfway, TX. The re-evaluated model was then used to study the effects of combinations of irrigation termination periods (between August 15 and September 30) and deficit/excess irrigation strategies (55%-115% ET-replacement) under dry, normal and wet years using weather data from 1978 to 2019. The 85% ET-replacement strategy was found ideal for optimizing irrigation water use and cotton yield, and the optimum irrigation termination period for this strategy was found to be the first week of September during dry and normal years, and the last week of August during wet years. Irrigation termination periods suggested in this study are useful for optimizing cotton production and IWUE under different levels of irrigation water availability.


Assuntos
Irrigação Agrícola/métodos , Gossypium/crescimento & desenvolvimento , Água Subterrânea , Fotossíntese , Estações do Ano
3.
J Environ Qual ; 47(1): 70-78, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29415107

RESUMO

Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (NO) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid western United States. The objective of these studies was to assess the effect of N fertilizer management on NO emissions from furrow-irrigated, overhead sprinkler-irrigated, and subsurface drip-irrigated cotton ( L.) in Maricopa, AZ, on Trix and Casa Grande sandy clay loam soils. Soil test- and canopy-reflectance-based N fertilizer management were compared. In the furrow- and overhead sprinkler-irrigated fields, we also tested the enhanced efficiency N fertilizer additive Agrotain Plus as a NO mitigation tool. Nitrogen fertilizer rates as liquid urea ammonium nitrate ranged from 0 to 233 kg N ha. Two applications of N fertilizer were made with furrow irrigation, three applications under overhead sprinkler irrigation, and 24 fertigations with subsurface drip irrigation. Emissions were measured weekly from May through August with 1-L vented chambers. NO emissions were not agronomically significant, but increased as much as 16-fold following N fertilizer addition compared to zero-N controls. Emission factors ranged from 0.10 to 0.54% of added N fertilizer emitted as NO-N with furrow irrigation, 0.15 to 1.1% with overhead sprinkler irrigation, and <0.1% with subsurface drip irrigation. The reduction of NO emissions due to addition of Agrotain Plus to urea ammonium nitrate was inconsistent. This study provides unique data on NO emissions in arid-land irrigated cotton and illustrates the advantage of subsurface drip irrigation as a low NO source system.


Assuntos
Irrigação Agrícola , Produtos Agrícolas , Óxido Nitroso , Fertilizantes , Gossypium , Nitrogênio/química , Solo
4.
Sensors (Basel) ; 8(11): 7241-7258, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27873926

RESUMO

Modern moisture restoration systems are increasingly capable of adding water to cotton bales. However, research has identified large variations in internal moisture within bales that are not readily monitored by current systems. While microwave moisture sensing systems can measure average bale moisture, this can be deceptive where water is unevenly distributed. In some cases, localized internal moisture levels exceed 7.5%, the upper safe limit for cotton bale storage, as determined by the USDA, as above this level, bales degrade and lose value. A high proportion of stored bales containing excess moisture have been discovered throughout the US in increasing numbers over the past several seasons, making the detection and prevention of this occurrence a critical goal. Previous research by the authors resulted in the development of microwave moisture-sensing technology. The current study examines an extension to this technology to allow for detailed cotton bale moisture imaging. The new technique incorporates a narrow beam imaging antenna coupled to a tomographic imaging algorithm. The imaging technique was able to resolve small (< 1 cm) high-permittivity structures against a low permittivity background. Moreover, the system was able to identify structures of known permittivity with high accuracy (coefficient of determination (r²) > 0.99). In preliminary testing on a wet commercial UD bale, the technique was able to accurately image and resolve the location of the pre-placed internal wet layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA